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 Lectures 5-6 

 Quantum Mechanics is constructed from a set of postulates about the way 

microscopic systems behave.  These postulates have the same logical role in Quantum 

Mechanics that axioms do in Mathematics, or laws do in Thermodynamics.  Each of these 

– postulates, axioms, and laws – act as the logical foundation on which the theory is built.

 They have different origins, and lead to systems with different bases for truth.  In 

mathematics, axioms are invented, and then the mathematical system is inferred from 

them.  The only basis for truth in mathematics is internal consistency based on logical 

inferences – i.e. whether a theorem based on the axioms is proven to be a direct 

consequence of the axioms.  There is no basis for deciding on the truth or falsehood of an 

axiom or of the mathematical system derived from it, as long as that internal consistency 

exists.  As an example, from a mathematical point of view, both Euclidian Geometry, 

based in part on the idea that parallel lines never meet, is just as true as Riemann 

Geometry which is based in part on the idea that parallel lines DO meet. 

Laws are summaries of experiments, and some of them are used to develop 

complex theoretical systems, as in the case of Thermodynamics.  Unlike axioms, the laws 

themselves can be proven true or false.  There are two bases for this – first, refined 

experiments may directly demonstrate that the laws are untrue.  Second, experiments can 

demonstrate that logically correct predictions based on the laws are untrue, which 

logically shows that the laws themselves are untrue.  Thus scientific systems based on 

laws differ from mathematical systems in that internal consistency is no longer sufficient 

to determine truth or falsehood – successful comparison to an external reality – 

experimentation – is also necessary. 
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Postulates are similar to axioms in that they are invented by the theorist.  They are 

different from axioms in that they are invented for the purpose of explaining 

experimental observations.  The postulates themselves are often not directly testable, 

however.  In those cases, they are used to develop a theoretical framework – i.e. to make 

predictions.  These predictions are then compared to experiment.  The truth or falsehood 

of the postulates is then based on the success or failure of the predictions. 

It is important to understand this, because a common trap for students first 

encountering Quantum Mechanics is to try to understand the direct justification for the 

postulates.  This is not possible, since they are not based on direct experience (are not 

laws), and most certainly are not based on common sense.  Remember that common 

sense is based on the internalization of the direct experience of our senses (hence the 

name), and the realm of quantum mechanics is in dimensions of size, energy and mass 

that are too small to be detected by our senses.  Thus it is pointless to try to understand 

where the postulates come from.  It is only useful to understand their implications, the 

way that predictions are based on them, and the truth or falsehood of these predictions. 

 The first of the postulates of quantum mechanics is an expansion of Max Born’s 

explanation of the meaning of ψ(x), and states that the wavefunction ψ(x) contains all 

available information about the system.  If the information is not contained in ψ(x), then 

it is information that quantum mechanics says we cannot obtain. 

There are two types of wavefunctions.  One type of wavefunction is a wavefunction 

that is a solution to the Schrödinger equation.  These wavefunctions are called 

eigenfunctions, and have special properties that we will discuss later.  The other type of 

wavefunction is a wavefunction that is not a solution to the Schrödinger equation.  In either 
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case, the wavefunction provides a complete description of the measurable properties of a 

system.  However, in each case, once we’ve determined the wavefunction that describes a 

system, we need to learn how to extract the information it contains. 

As we have seen, one of the bits of information we can obtain is the energy of our 

system.  We will find that in many cases the solution of the Schrödinger equation yields a 

set of discontinuous values of the total energy E.  In the cases where E is restricted to 

discontinuous values we say that it is quantized.  Our first two examples of solving the 

Schrödinger equation will include one case where the energies are quantized and one where 

they are not. 

 Let’s return to the Schrödinger equation.  If we factor out the ψ(x)'s in our 

Schrödinger equation, we can rewrite it as  

[ -
2m x

+V(x)] (x)= E (x)
2 2
 ∂

∂ 2 ψ ψ  

When the equation is written this way, we can classify it as one of a widely studied class 

of equations called eigenvalue equations.  We call the quantity in brackets an operator. 

 An operator is a symbol that tells you to perform some action on the variable or 

function that follows.  For example, we can consider the derivative, dy
dx

, to be the operator, 

d
dx

, acting on the variable y.  Other examples of operators would be x, for the operation 

multiply by x, or , for the operation take the square root of.  We will denote an operator 

by a capital letter topped by a carat, like A .  The function, variable or number on which 

the operator acts is called the operand.  When we write  

g x Af x( )  ( )=  
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we mean that g(x) is the function produced when the operator A  operates on the operand 

f(x). 

Let’s look at a couple of examples of using operators.  

Example 1)  ,A =
x

f(x)= 2x.
2∂

∂ 2  ˆ( ) ( ).g x Af x=  What is g(x)? 

g(x)= Af(x)=
x

(2x)=
x

(2)= 0
2



∂
∂

∂
∂2  

Example 2)  , sinA =
x

f(x, y)= ( xy ).2∂
∂

 ˆ( ) ( ).g x Af x= What is g(x)? 

g(x)= Af(x)=
x

( ( xy ))= y (x y ).2 2 2
 sin cos∂

∂
 

 Quantum mechanics uses only a class of operators called linear, Hermitian 

operators.  An operator A  is linear if  

 ( ) ( )  ( )  ( )A c f x c f x c Af x c Af x1 1 2 2 1 1 2 2+ = +  

In words, this means that an operator is linear if the operator operating on a linear 

combination of operands results in the same linear combination of the operator operating 

on each individual operand. For example, the operator d
dx

 is linear.  To see this, we plug 

our operator into the definition and get 

d
dx c f (x)+ c f (x) = c

df
dx

+ c
df
dx1 1 2 2 1

1
2

2 , 

which satisfies the condition for a linear operator.  It is also useful to note that a linear 

combination of linear operators is also a linear operator.  For example, since d
dx

2

2  
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and x are both linear operators, 5
2

2
d
dx

ix+ , a linear combination of the operators, is also a 

linear operator.  Prove this as an exercise. 

An example of an operator that is not linear is the operator A  = square, i.e. the 

operator that squares a variable.  To see this, we plug our operator into our definition of a 

linear equation and get 

( )c f c f = c f + c c f f + c f c f c f1 1 2 2
2

1
2

1
2

1 2 1 2 2
2

2
2

1 1
2

2 2
22+ ≠ + . 

This fails the test for linearity for two reasons – the extra term 2c1c2f1f2 and the fact that 

the operator affected the coefficients c1 and c2.  The significance of a linear operator is 

that if an operator is linear, the eigenvalues will be additive, i.e., the eigenvalue of the 

linear combination of operators making up the linear operator, will be the same linear 

combination of the eigenvalues of the component operators.  As an example, the operator 

for total energy is called the Hamiltonian operator and is symbolized by Ĥ . Ĥ  is a 

linear operator. It is the sum of the linear operators for potential and kinetic energy, 

ˆ ˆ ˆH T V= + .  Since it is linear, the eigenvalue for the total energy, E, will be the sum of 

the eigenvalues of the kinetic energy and potential energy operators, E T V= + , where T 

is the eigenvalue of the kinetic energy operator and V is the eigenvalue of the potential 

energy operator. 

 An operator is Hermitian if for two functions ψ1 and ψ2  

* *
1 2 2 1

ˆ ˆ( ) ( )A d A dψ ψ τ ψ ψ τ=∫ ∫  

The reason that quantum mechanical operators must be Hermitian is that the eigenvalues 

(solutions) obtained by solving quantum mechanical equations are always real when 

the operators are Hermitian.  Since we will be using the solutions of our equations to 
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describe physical observables the requirement that the operators are Hermitian ensures that 

the results of the equations will be physically meaningful. 

 As an example of how this equation works, let Â  be the operator x̂
dP ih
dx

= −  , the 

operator for the linear momentum in the x-direction, and let  

2 / 2
1 1/ 4

1( ) xx e xψ
π

−= −∞ < < ∞  

and  

2
1/ 2

/ 2
2 1/ 4

2( ) xx xe xψ
π

−= −∞ < < ∞  

Therefore, 

2
1/ 2

/ 2
2 1/ 4

2ˆ ( ) xdA x i xe
dx

ψ
π

−= −   

2 2
1/ 2

/ 2 2 / 2
1/ 4

2 [ ]x xi e x e
π

− −= − −  

and 

2 2
1/ 2

* 2
1 2

2ˆ( ) ( ) ( )x xx A x dx i e x e dxψ ψ
π

∞ − −

−∞

 = − − 
 ∫ ∫  

1/ 2 1/ 2
1/ 2

1/ 2

2
2 2

ii ππ
π

  − = − − =  
   



 . 

Similarly, 

2 2* / 2 / 2
1 1/ 4 1/ 4

1ˆ ( ) x xd iA x i e xe
dx

ψ
π π

− −= + = −


  

and 

2
1/ 2

* * 2 / 2
2 1

2ˆ( ) ( ) xx A x dx i x e dxψ ψ
π

∞
−

−∞

 = −  
 ∫ ∫  
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1/ 2 1/ 2

1/ 2

2
2 2

ii π
π
 = − = − 
 



 . 

Thus, we see that x̂P  is Hermitian. 

The reason that operators are important in quantum mechanics is that they allow 

us to calculate the theoretical values of measurable quantities. The ability to calculate 

the values of these measurables depends on two new postulates of quantum mechanics. 

The first, our second postulate, is that for every observable in quantum mechanics 

there corresponds a quantum mechanical operator A .  In a short while we’ll show 

how to construct the operator that corresponds to a given observable. 

The immediate question we need to answer now is HOW we use operators to 

determine the values of the observables.  We can use operators to calculate the values of 

measurable properties because it is possible to write a type of equation, using operators, 

called an eigenvalue equation.  For an arbitrary operator, A , the eigenvalue equation is 

 Af(x)= af(x)  

When we try to solve an eigenvalue equation, we are searching for the function, or set of 

functions, f(x) which when operated on by A  yields the original function f(x) multiplied 

by a constant.  We call a function which satisfies an eigenvalue equation an eigenfunction 

of the operator A , and we call the constant a an eigenvalue of A .  In other words, if I 

have some function f(x) and an operator A , and I operate on my function with A , and get 

back my function times a constant, then my function is an eigenfunction and my constant 

is an eigenvalue. 

 Why do we care about eigenfunctions and eigenvalues?  This is where our third 

postulate comes in.  It says that once we know the identity of an operator that 
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corresponds to an observable, the only values of that observable which can be 

measured are the eigenvalues ai of that operator. 

As a first example, the one dimensional Hamiltonian operator, 

 ( )H
m x

V x= − +


2 2

22
∂
∂

, is the operator which corresponds to the total energy of a particle 

moving along the x-axis.  Its eigenvalues are the only values of the energy that can be 

measured.  This is exactly the same as saying that these are the only values of the energy 

that the particle can have. 

Our procedure for generating operators will be to first find the expression for the 

observable we’re interested in in classical physics, and then construct its quantum 

equivalent.  To do this we need to generate rules for writing quantum mechanical operators.  

Let’s look at the Hamiltonian as a start.  The Hamiltonian operator in quantum mechanics 

corresponds to a function of classical mechanics also called the Hamiltonian that represents 

the total energy of a conservative system.  The classical Hamiltonian is the sum of the 

kinetic energy T, and the potential energy, V(x), i.e.,  

H T V x p
m

V xx= + = +( ) ( )
2

2
 

By comparing the classical Hamiltonian and the quantum Hamiltonian, we can figure out 

the quantum operators that correspond to several classical observables.  First note that the 

potential energy, V(x) appears in both the classical and quantum Hamiltonians.  This must 

mean that the operator which corresponds to the potential energy is simply the potential 

energy itself, i.e., V = V(x).  Since the only other component of the Hamiltonian is the 

kinetic energy in the x direction, Tx, the operator for the kinetic energy, T
m xx = −


2 2

22
∂
∂

.  
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As a final example, if we want to figure out the operator for the linear momentum in the 

x direction, we note that the classical kinetic energy is given by T p
mx
x=

2

2
 and the quantum 

mechanical kinetic energy is given by T
m xx = −


2 2

22
∂
∂

.  This suggests that p
xx

2 2
2

2= −
∂
∂

 

and that therefore ˆ xp i
x
∂

= −
∂
  . 

Comparisons like these lead to the following rules for generating the operators 

that correspond to various classical observables. 

1) The operator for a position variable, q , is the position variable itself.  This 

is also true for observables that are functions of position only.  Thus the operator for 

position in the y direction, is y = y, and the operator for the potential energy in a 

conservative system, which is a function of position only, is V = V(x). 

2) The operator for momentum, p , is −i
q



∂
∂

, where q indicates a position 

variable.  For example, the operator for the momentum in the z direction is p i
zz = − 
∂
∂

. 

All other operators can be generated as a function of position and momentum 

operators.  Therefore, we need to learn some rules for creating functions of operators.  

For the sum of two operators we simply have 

(A+ B)f(x)= Af(x)+ Bf(x)     

In other words, added operators function distributively. 

Multiplication of operators is accomplished by applying the operators in 

sequence.  In other words 
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(  )  AB f(x)= A(Bf(x))  

In multiplication, the order of the operators matters. In general    ABf(x) BAf(x)≠ .  For 

example, consider the operators x  and p .  If we take the product xp  and operate on f(x), 

we get  

g(x)= xpf(x)= -i x f(x)
x




∂
∂

 

If however, we take the product  px , we get 

g(x)= pxf(x)= -i
x

(xf(x))= -i (f(x)+ x f(x)
x

) 
 

∂
∂

∂
∂

. 

If    ABf(x)= BAf(x) then the operators are said to commute.  The significance of this 

is that if two operators commute, then their observables can be measured simultaneously 

with infinite precision, i.e., the uncertainty principle does not apply to that pair of 

variables.  If they do not commute, then the uncertainty principle does apply.  For 

example, we have just shown that x  and p  don't commute, which means that the 

uncertainty principle applies to position and momentum.  A common function which is 

used to evaluate whether two operators commute is the commutator, [  , A B ], which is 

defined by the relation, 

[  , ] ( ) (     ) ( )A B f x AB BA f x= − . 

If the commutator is zero, then the operators commute and the uncertainty principle doesn’t 

apply.  If however, [  , ]A B
i

=
 , then the uncertainty principle applies.  Note that in most 

cases, you cannot properly evaluate commutation unless the operators are operating on a 

function. 
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In addition to the operators I've already shown you, we will determine other 

operators as we need them. 

Once we obtain the operator for an observable, another postulate says that if the 

wavefunction ψi of the system is an eigenfunction of an operator, then the only 

measured value of the observable will be the eigenvalue corresponding to this 

eigenfunction.  Let me repeat this, because it is very important.   If the wavefunction ψi 

that defines the state of a system is an eigenfunction of some operator, then the only 

measured value of the observable associated with that operator will be the eigenvalue ai 

associated with that eigenfunction. 

However, if the wavefunction of the system, which we also call the state of the 

system, is not an eigenfunction of the operator, then each measurement made on the system 

will still be one of the eigenvalues of the operator.  We are just unable to predict which of 

the eigenvalues it will be.  However, later we'll learn how to calculate the probability that 

a given eigenvalue will be observed. 
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Lecture 7 

Let’s see how what we’ve talked about so far works by applying it to a pair of 

simple systems. The simplest problems in quantum mechanics are the free particle and the 

particle in a one-dimensional box.  A free particle is one that can move unconstrained 

through space, with no potential impeding its motion.  In other words, for the free particle 

moving in one dimension, V(x) = 0.  Thus the Schrödinger equation for the free particle 

is 

-
2m

(x)
x

E
2 2
 ∂

∂
=

ψ ψ2 , 

which we can rewrite as  

2

2

(x)
x

= - 2mE = -k∂
∂
ψ ψ ψ2

2



, 

where k = ( 2mE )2
1/ 2



, and is called the wavevector of the particle.  The most general 

solution to this equation is  

ψ (x)= (A kx+ B kx)cos sin . 

We can see that this satisfies the Schrödinger equation by plugging this value of ψ  into 

our equation. When we insert our solution into the Schrödinger equation, we get 

∂
∂

ψ
2

2
2 2

x
A kx B kx k A kx B kx k( cos sin ) ( cos sin )+ = − + = − ,  

just as our equation requires. 

 There are two main conclusions we can draw from this result.  The first we can 

draw by calculating * dxψ ψ  , the probability.  This shows that the probability of finding a 

particle is the same anywhere along the x axis, just as we would expect for a particle 
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unconstrained by any potential energy.  The second is that the energy can take on any value.  

We can see this since solving for the energy in terms of k yields E k
m

=


2 2

2
 and since the 

solution to our Schrödinger equation contains no integers, it places no restriction on the 

value of k.  In other words, the energy of a free particle is not quantized. 

The particle in a one-dimensional box is very similar to the free particle.  In this 

system a particle of mass m is constrained to move within some length a along the x axis.  

For this problem, the potential energy function is given by  

V(x)  = 0,   0 ≤ x ≤ a  

V(x)  = ∞,   x < 0, x > a. 

 

Figure 1: Potential Energy V(x) For Particle in a Box 

In other words, because it is confined by a potential barrier of infinite height, the particle 

can only move between zero and a.  It is similar to the free particle because between 0 and 

A the potential is zero.  It differs because in this problem there are two boundaries defining 

regions where it is impossible for the particle to be, since the potential is infinity.  We want 
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to determine ( )xψ  for all three of the regions of space defined by this potential. For x > a 

and x < 0 this is trivial.  Since ( )V x = ∞  in these regions it is impossible for the particle to 

be there, and therefore the probability amplitude, ( )xψ , must be zero everywhere in these 

regions. 

In the region 0 ≤ x ≤ a, V(x) = 0 and the Schrödinger equation is  

-
2m

(x)
x

E
2 2
 ∂

∂
=

ψ ψ2  

which just as before can be rewritten as 

2

2

(x)
x

= - 2mE = -k∂
∂
ψ ψ ψ2

2



 

where k = ( 2mE )2
1/ 2



, just as it was for the free particle.  Once again the general solution 

to this equation is  

ψ (x)= A kx+ B kxcos sin . 

But we haven’t yet accounted for the fact that our particle can only be found between 0 and 

a.  Remember that ( )xψ  must be continuous for all values of x. The region where we have 

to pay particular attention to this is at the boundary of the region in which the particle 

moves.  At x = 0, ψ must be equal to zero, since ψ = 0 for x<0.  Similarly at x = a, ψ must 

also equal zero, since ψ = 0 for all x > a.  We call these constraints on the value of ψ at the 

boundary of our potential well boundary values. 

These boundary values place constraints on our solution.  We see the first of 

these by setting x = 0 and setting ψ = 0 in compliance with our first boundary value.  This 

gives us 

ψ (0)= 0 = A 0+ B 0 = A.cos sin  
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Therefore A = 0 and our wavefunction simplifies to  

ψ (x)= B kx.sin  

We see our second constraint by applying our second boundary condition, setting x = a and 

ψ = 0.  This gives us 

ψ (a)= 0 = B kasin  

This will only equal zero when B = 0 or when ka = π, 2π, 3π,..., nπ,...., where n is an 

integer.  Since B=0 yields zero for the whole wavefunction, this is not an interesting 

solution, since this means that the probability is zero that the particle will be described by 

the wavefunction.  For this reason we will focus on our second solution.  For this we can 

write 

k = n
a
π . 

and our wavefunction becomes  

ψ π(x)= B n x
a

sin  

If we normalize this as before, we get finally,  

ψ π(x)= ( 2
a

) n x
a

1/ 2 sin  

Note that the requirement k = n
a
π  leads to the quantization of the energy of the 

particle in a box, since 

k = ( 2mE ) = n
a2

1/ 2



π  

Solving this equation for E yields 



 47 

E = n h
8ma

2 2

2 , 

which is quantized because of the presence of the integers in the equation. 

Notice that the general solutions to the Schrödinger equation for the free particle 

and the particle in a box are identical.  The only difference between the two problems is 

the presence of the boundaries that constrain the movement of the particle in the particle in 

a box.  We will find that every time a boundary constrains the motion of a particle, the 

energy of that particle will be quantized.  In the absence of these constraints the particle 

can take on any energy. 

What are some of the physical consequences of these results?  First, notice that 

there is a minimum energy for the particle in a box.  The lowest energy is when n= 1 and 

is equal to 
2

1 28
hE
ma

= .  This minimum energy is called the zero point energy of the system.  

Why can’t n = 0?  The reason is that substituting n=0 in our equation for the wavefunction 

of the particle in a box yields ψ=0 for all values of x.  Since the probability of finding a 

particle in a given position is given by *( ) ( )x x dxψ ψ , this means that the probability of 

finding a particle in a state with n=0 is identically zero.   

There is an interesting corollary to this.  If n was 0 the energy would equal zero, 

the particle would be motionless and would violate the uncertainty principle, since in order 

for the particle to be motionless, it’s position uncertainty would have to be infinite, and 

therefore the particle could not be confined to the box.  In other words, the uncertainty 

principle forbids that any bound system be entirely motionless, i.e., not only 

thermodynamics but quantum mechanics forbids any system from reaching a temperature 

of absolute zero.   
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As the quantum number n increases, the energy of the particle increases, with 

E 4h
8ma2

2

2= , E = 9h
8ma3

2

2 . etc.  

Now that we’ve looked at the eigenvalues for the particle in a box, let’s look at the 

eigenfunctions.  If we plot the wavefunctions for n = 1, n = 2, etc., we see that they take on 

the appearance of standing waves.  Notice that n=1 contains 1/2 of a wave, n=2 contains a 

full wave, n = 3 contains 3/2 wave, and in general level n will contain n/2 waves, i.e., each 

level contains an integral number of half waves.  If we look at the probability density *ψ ψ  

for each of these levels, we find that for n = 1 the maximum probability is in the center of 

the box, at 
2
a .  For n=2, there are two maxima, at 

4
a  and 3

4
a .  As n increases, the 

probability density spreads out more and more, until at high n, the distribution is 

completely even, which is what we would expect classically.  This is an important result.  

In general, a quantized system will approach the behavior predicted by classical mechanics 

(the classical limit) when the quantum numbers become very large.  This is called the 

correspondence principle, due to Neils Bohr. 

Notice that in our probability distribution there are points, besides the fixed points 

at x = a and x = 0, where the probability density is zero.  These points are called nodes.  In 

many problems of interest to us, including the one and three dimensional harmonic 

oscillator, the one and three dimensional particle in a box, the rigid rotator and the hydrogen 

atom, the higher the number of nodes in a state the higher the energy of that state.  

For the particle in a box, the number of nodes is related to n by  

# nodes = n - 1. 
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The particle in a box may seem like an artificial 

problem with no applications to real world systems, but it 

has in fact been applied to the spectroscopy of conjugated 

hydrocarbons.  This is because the particle in a box is a 

fair approximation for the energies of π electrons in linear 

conjugated systems.  Consider, for example, butadiene.  

For the sake of simplicity, we'll assume that the π-

electrons move in a straight line whose length, a, is equal 

to the sum of the C-C bond lengths plus the van der Waals 

radii of the two terminal carbon atoms.  

a = 2C=C + C-C  + 2rvdW (C) 

= 2 x 135 pm + 154 pm + 2 x 77 pm = 578 pm = 5.78 x 10-10 m. 

Thus we will model the electrons as moving in a 5.78 x 10-10 m box.  According to the 

solution for the particle in a one dimensional box,  

nE = n h
8ma

2 2

2 , 

where in this case, as we have just shown, a, the length of the box, is equal to 5.78 x 10-10 

m.  The Pauli exclusion principle, which we will discuss in detail later, tells us that there 

can only be two electrons for each quantum number n.  Butadiene has four π electrons.  We 

place two in the lowest state of our particle in a box, n= 1, and the final two in n = 2.  Thus 

for butadiene, the highest occupied molecular orbital is n = 2, i.e., HOMO = 2.  The lowest 

unoccupied molecular orbital, LUMO, is n = 3.  The electronic absorption should occur at 

 

H

H

H

H

H

H
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the energy necessary to promote an electron from the HOMO to the LUMO, i.e., from n = 

2 to n= 3.  The energy of this transition is  

∆E(3 2)= h
ma

- h
ma

= 9.02x J← −9
8

4
8

10
2

2

2

2
19  

This corresponds to an absorption at 220 nm.  Butadiene has an absorption at 217 nm, so 

we see that despite its simplicity, the particle in a box is a fairly good model for the 

ultraviolet spectra of simple conjugated models.   
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Lecture 8 

At this point, we’ve seen our first example of how to solve the Schrödinger 

equation.  We’ve seen how to use the eigenfunctions we’ve obtained to describe the 

probability of finding the system in various positions.  We’ve also seen how to extract 

information from our eigenfunctions – we determined the energy by operating on our 

eigenfunctions with the Hamiltonian (total energy) operator.   

However, we still need to learn more about the mechanics of quantum mechanics 

– for example, we don’t yet know how to extract information from a wavefunction when it 

is not an eigenfunction, i.e., not a solution of an eigenvalue equation.  We already have 

made a couple of statements about these types of wavefunctions, first that even though they 

are not eigenfunctions of our operators, we’ll still always observe only eigenvalues of the 

operator but that we can’t predict which one, and second, that we can predict the probability 

of observing a given eigenfunction.  In order to understand why these statements are true, 

we’ll have to learn something about the mathematical properties of eigenfunctions.   

We've already stated that to be consistent with their interpretation as probability 

amplitudes, eigenfunctions must be normalized.  This condition is usually written as 

* 1i jd if i jψ ψ τ
∞

−∞
= =∫  

At this point, I’d like to show you another form for writing this equation, the so-called 

Dirac Bra-Ket notation.  Dirac chose to indicate the equation above as follows: 

1i j if i jψ ψ = = . 

This equation means the same as the integral equation above.  I am introducing it because 

this notation appears frequently in textbooks and the literature, and because it is a notation 

that easily bridges the Schrodinger and Heisenberg formulations of Quantum Mechanics.  
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In this equation, it is understood that the term on the left iψ  , called a bra, represents the 

complex conjugate of iψ  in the integral, while the term on the right, jψ  called a ket, 

represents the second wavefunction and the rest of the integral.  If iψ  is an eigenfunction, 

then iψ  is called an eigenbra, and if jψ  is an eigenfunction then jψ  is called an 

eigenket. (Dirac chose Bra and Ket as the names for these symbols because in his notation 

the wavefunctions are surrounded by a bracket, and Bra and Ket are the two halves of 

bracket (if you spell poorly.) This clearly tells us something about how Dirac’s mind 

worked, but I’m not sure what.) 

Another property of a set of eigenfunctions is that the product of two different 

eigenfunctions of the same operator integrated over all space is zero, i.e., 

* 0i jd if i jψ ψ τ
∞

−∞
= ≠∫ , 

or in bra-ket notation 

 0i j if i jψ ψ = ≠  

When two wavefunctions satisfy this equation they are called orthogonal wavefunctions.  

So in other words if we generate a set of eigenfunctions by solving the Schrödinger 

equation, any two of these functions will be orthogonal. 

Our two statements on orthogonality and normalization are usually represented by 

a single equation,  

*
i j ijdψ ψ τ δ

∞

−∞
=∫  

or 

i j ijψ ψ δ=  
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where δij is called the Kronecker delta function which is defined by  

δij = 0, i ≠ j 

δij = 1, i = j. 

The members of sets of functions that are both orthogonal and normalized are called 

orthonormal functions. 

 It turns out that all discrete solutions to the Schrödinger equation are complete 

orthonormal sets of functions.  A complete set is one where any function of a member of 

the set results in a function which is still a member of the set.  Complete orthonormal sets 

of functions are important because any arbitrary function ψ(x) can be expressed as a 

linear combination of members of a complete orthonormal set of functions.  Thus any 

arbitrary wavefunction ψ(x) can be expressed as a linear combination of eigenfunctions, 

ψi(x).  In other words,  

ψ ψ ψ ψ( ) ( ) ( ) ( ) ...x c x c x c x= + + +1 1 2 2 3 3  

where ψ(x) is any arbitrary wavefunction, the ci’s are constants, and the ψi(x) are 

eigenfunctions of some operator.  This rule, that any arbitrary wavefunction can be 

expressed as a linear combination of eigenfunctions, is sometimes referred to as the 

superposition principle.  Since the functions that are being superposed have wave 

characteristics, the superposition principle opens up the possibility of constructive and 

destructive interference between wavefunctions. 

 This explains why we observe only eigenvalues even when our wavefunction ψ(x) 

is not itself an eigenfunction.  Since any wavefunction that is not an eigenfunction is a 

linear combination of eigenfunctions, we are observing the eigenvalue of one of the 

eigenfunctions that make up our wavefunction.  The probability of observing one of 
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these eigenvalues is equal to the square of its coefficient, ci2.  T his implies that the sum 

of the squares of the coefficients must be one, i.e., 

ci
i

2 1∑ = . 

Sometimes two eigenfunctions will have the same energy.  In this case we say that 

the eigenfunctions are degenerate.  One property of degenerate eigenfunctions is that all 

linear combinations of degenerate eigenfunctions will also be eigenfunctions.  This is 

not true for nondegenerate eigenfunctions and all linear combinations of nondegenerate 

eigenfunctions will not be eigenfunctions. 

Note that while the solutions we have obtained for the particle in a box are 

eigenfunctions of the Hamiltonian operator they are not eigenfunctions of the position 

operator X .  If this was so, X (x)= x (x)ψ ψ would equal a constant times ψ(x), which is 

not the case.  According to our postulates, if we have a state ( )xψ which is an eigenfunction 

of the Hamiltonian but NOT an eigenfunction of the operator X , we will obtain an 

eigenvalue of some eigenfunction of the operator X  when we measure x, but we won't be 

able to predict which one.  Repeated measurement of x will yield the probability densities 

we have calculated. 

Even though we cannot predict the value of a given measurement when a 

wavefunction is not an eigenfunction of the operator in question, we can always 

predict the average value of the measurement.  For this we need another postulate. 

To introduce this postulate, we'll begin with a review of averages.  Most of us are 

introduced to averages of what are called discrete distributions.  The numbers you obtain 

by rolling a die are a discrete distribution, with the integers 1-6 the only possible results, 
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and no intervening numbers possible.  Discrete distributions are intrinsically discontinuous.  

In this case, the procedure for taking an average is simple.  If you roll the die 5 times, you 

add the five numbers, divide by 5 and you have the average.  For example if five rolls got 

you 1,3,2,4,3, your average is (1+3+2+4+3)/5 = 2.6.  In general the average of N 

measurements of some observable F is given by  

F
F

N

n

N

=
∑

1 , 

where the brackets indicate an average value.  An alternative way of calculating the average 

for a discrete distribution is with the equation 

F p Ff
f

N

f=
=
∑

1

 

where pf is the probability that the result Ff is observed.  In our example above, the 

probability of observing 1,2, and 4 was 1 in 5 or .2, while the probability of observing 3 

was 2 in 5 or .4, and the probability of observing 5 and 6 was zero. Our average is 1 x .2 + 

2 x .2 + 3 x .4 + 4 x .2 + 5 x 0 + 6 x 0 = 2.6.  The set of probabilities, {pf }, is called a 

discrete probability distribution. 

If our measurements can vary continuously, as would be the case for the 

measurement of a series of lengths, the average is calculated using a continuous 

probability distribution in place of the discrete probability distribution.  If our continuous 

probability distribution is given by f(x), then the average of some variable x is given by 

-
x xf(x)dx

∞

∞
= ∫  
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This fits nicely into our quantum mechanical formulation, since ψ*(x)ψ(x)dx is a 

continuous probability distribution.  However, there's a bit of a twist in quantum 

mechanics.  A postulate of quantum mechanics says that the average of a quantum 

mechanical observable A, is given by 

* ˆ( ) ( )a x A x dxψ ψ
∞

−∞
= ∫  

or in bra-ket notation 

ˆ( ) ( )a x A xψ ψ= . 

Note that this equation does two things.  The operator operating on ψ extracts the value or 

values of A that can be observed, and then the product with *ψ  gives us our average. Note 

that if ψ(x) is an eigenfunction of A , then <a> is simply the eigenvalue of A , an.  LET'S 

PROVE THIS CLAIM TOGETHER.  NOW LET'S LOOK AT A SIMPLE LINEAR COMBINATION OF 

EIGENFUNCTIONS, ψ = C1ψ1(X) + C2ψ2(X) AND SEE WHAT ITS AVERAGE IS. 

Let’s do a quick example and calculate the average position for the particle in a 

box.  We'll make this a bit fancy and rather than calculate the average for a given state, 

we'll calculate a formula so we can see what the average is for any value of n.  Before I 

actually calculate the average, let’s look at the probability density for a few states. [DRAW] 

CAN ANYONE PREDICT WHAT THE AVERAGE POSITION WILL BE? [a/2] The average is in the 

middle of our range of possible x values because our potential function is symmetric about 

the range of x.  In general we will find that any time we have a symmetric potential 

function our probability density will be symmetric as well.  The wavefunction for the 

particle in a box is  

n
1/ 2= ( 2

a
) n x

a
ψ πsin  
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Therefore the average of x over the range 0 to a is given by  

 

* *

0

1/2 1/2

0

2

0

ˆ( ) ( )

sin sin

2 sin

a

a

a

x x X x dx

2 n x 2 n x( x( dx) )
a a a a

n xx dx
a a

ψ ψ

π π

π

=

=

=

∫

∫

∫

  

This integral, while difficult, can be found in any standard table of integrals and yields 

22 a ax ( )
a 4 2

= =  

Note that this calculation yields the same result as our qualitative prediction of the 

probability density, that the average position is the same for all states of the particle in a 

box. 

In addition to being able to calculate the average of an observable quantity, it is 

useful to know how widely a measurement is spread around the average.  A useful 

measurement of this is the variance, σx
2.  The variance is the square of a function that you 

are all familiar with, the standard deviation, σx.  Because of the manner in which we 

calculate quantum mechanical averages, in quantum mechanics the variance is most easily 

calculated by using the formula 

σ x x x2 2 2= < > − < >  

Before we go ahead and calculate the spread, let’s go back and look at our probability 

density for the particle in a box.  WHAT IS THE TENDENCY IN THE SPREAD OF THE 

DISTRIBUTION AS WE GO UP IN ENERGY?  In order to calculate the variance we need to be 
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able to calculate <x2>.  WHAT IS THE FORMULA FOR THE AVERAGE OF X2?  So for the particle 

in a box,  

1/ 2 1/ 22 2 2 2

0 0

2sin sin sin
a a2 n x 2 n x n xx ( x ( dx x dx) )

a a a a a a
π π π

= =∫ ∫  

Of course, we look this up in our handy table of integrals to find that  

2 2
2 2 4( ) ( 2)

2 3
a nx

n
π

π
= −  

Since we now know <x> and <x2>, we can calculate the variance, 

2 2
2 22 2

x
a nx x ( ( - 2))

2 n 3
πσ

π
= − =  

If you plot the variance as a function of n you will find that this formula matches our 

intuition and that as n increases the probability distribution gets wider.  AS A HOMEWORK 

ASSIGNMENT, CALCULATE THIS VARIANCE FOR N = 1 TO 10, FOR A BOX WITH A = 1.00 NM.  

So we now have two tools to help us understand the nature of a probability distribution, 

the average or expectation value and the variance.  One way that the variance is used is as 

a measure of the uncertainty of an observable.  The larger the variance, the larger the 

uncertainty. 



 59 

Lecture 9 

Many of the problems that are of the greatest interest to chemists are 

multidimensional.  For example, the rigid rotor, the simplest model of a rotating molecule, 

is two dimensional, while the hydrogen atom is three dimensional, and the vibration of 

polyatomic molecules turns out to be 3N-6 dimensional, where N is the number of atoms 

in the molecule.  While each of these problems has its own unique features, all of them 

have certain common features.  We can see what these are by studying the simplest three-

dimensional problem, the particle in a three-dimensional box. 

In this problem the particle is contained in a box with sides of length a, b, and c.  

Outside of the box the potential is ∞.  We write this as the set of conditions 

 V = 0 , 0 ≤ x ≤ a; 0 ≤ y ≤ b; 0 ≤ z ≤ c 

 V = ∞, elsewhere. 

The Schrödinger equation for a single particle moving in three dimensions is 

 ( , , ) ( , , )H x y z E x y zψ ψ=  

where  

H
2m

V(x, y,z)= − ∇ +


2
2 ,  

and where ∇2 is called the Laplacian, which is the dot product of two gradients, where the 

gradient ∇ is defined as  

i j k
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂



 

, 
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and is a vector quantity where i


, j


, and k


 are unit vectors along the x, y and z axes 

respectively.  The dot product of the gradient with itself, the Laplacian, is a scalar 

quantity and is equal to 

2
2 2 2

2 2 2

+ +
x y z
∂ ∂ ∂∇ = ∇⋅∇ =
∂ ∂ ∂

. 

So we see that two differences in our three dimensional case are that the wavefunctions 

will be functions of x, y, and z, and the partials are taken not just with respect to x, but 

with respect to y and z as well. For cases where the potential is not zero, the potential will 

be a function of the three variables as well.  For a wavefunction in three dimensions, x, y, 

and z, the probability density is * (x, y,z) (x, y,z)ψ ψ , the probability that a particle will be 

found in an infinitesimal volume near x,y,z is given by 

 prob{x,x+ dx; y, y+ dy,z,z+ dz} = (x, y,z) (x, y,z)dxdydz*ψ ψ , 

while the probability that we will find the particle in the finite volume bounded by x1, x2, 

y1, y2, z1 and z2, is given by the triple integral, 

{ } 2 2 2

1 1 1

*
1 2 1 2 1 2, ; , ; , ( , , ) ( , , )

x y z

x y z
prob x x y y z z x y z x y z dxdydzψ ψ= ∫ ∫ ∫  

Since this integral, as was the case for the one-dimensional problem, is also a probability, 

we have the same requirements as before for normalizability, single valuedness and 

continuity. 

A multiple integral is sort of a partial derivative in reverse.  What you do is choose 

one variable to integrate at a time and hold the others constant.  Then you choose the next 

and so on.  For example, consider the integral of the simple function xy + yz + zx.  The full 

triple integral is  
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( )
x y z

xy yz zx dxdydz+ +∫ ∫ ∫  

Let’s do the integral with respect to x first, treating y and z as constants. 

2 2

1x y z y z

x y zxxy yz zxdxdydz ( xyz c )dydz
2 2

+ + = + + +∫ ∫ ∫ ∫ ∫  

Now we integrate with respect to y. 

( )
2 2 2 2

1 2
x y z z

x y xy z zx yxy yz zx dxdydz ( c y c )dz
4 2 2

+ + = + + + +∫ ∫ ∫ ∫  

Finally, we integrate with respect to z. 

2 2 2 2 2 2

1 2 3
x y z

x y z xy z z x yxy yz zxdxdydz c yz c z c
4 4 4

+ + = + + + + +∫ ∫ ∫  

Note that the order of the integrations is not important.  When I was taught how to do this 

we generally chose to do the easiest integral first. 

Now let’s return from our brief digression on multiple integrals and return to our 

consideration of the particle in a three dimensional box.  SINCE V(X,Y,Z) = 0 INSIDE THE 

BOX, WHAT WILL THE SCHRöDINGER EQUATION FOR THIS PROBLEM BE? [

− ∂
∂

+ ∂
∂

+ ∂
∂

=
2 2 2 2

2m
(

x y z
) (x, y,z) E (x, y,z)

2 2 2 ψ ψ ] The usual method for solving 

multidimensional problems of this sort is called separation of variables.  What we do is 

assume that ψ(x,y,z) is the product of three functions of one variable, i.e.,  

ψ (x, y,z)= X(x)Y(y)Z(z)  

This procedure is valid as long as you can write your Hamiltonian as the sum of three 

Hamiltonians of a single variable only.  In the case of the particle in a three dimensional 

box,  
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   ( ) H = -
2m

(
x

+
y

+
z

)= -
2m x

-
2m y

-
2m z

= H (x)+ H y + H (z)
2 2 2 2 2 2 2 2 2 2
   ∂

∂
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂2 2 2 2 2 2 1 2 3  

Since we've broken down our Hamiltonian into three Hamiltonians of one variable each, 

separation of variables is valid for this problem.  The effect of separation of variables is to 

break our problem down into three one-dimensional problems,  

H X(x)= E X(x)x x  

H Y(y)= E Y(y)y y  

H Z(z)= E Z(z)z z  

where the total energy E = Ex + Ey + Ez.  Since each of these one dimensional problems is 

exactly the same as the one dimensional particle in a box, we can immediately write down 

solutions for X(x), Y(y) and Z(z). 

2 2
1/2

2sin xx
x

n x2 n hX(x)= ( , =) Ea a 8ma
π  

2 2
1/2

2sin y y
y

n y2 n hY(y)= ( , =) Eb b 8mb
π

 

2 2
1/2

2sin zz
z

n z2 n hZ(z)= ( , =) Ec c 8mc
π  

This means that  

sin sin sin1/ 2 yx z
n yn x n z8(x, y,z)= X(x)Y(y)Z(z)= ( )

abc a b c
ππ πψ  

and  

x y zn ,n ,n x y z
x y zE E E E h

8m
( n

a
n
b

n
c

)= + + = + +
2 2

2

2

2

2

2
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Notice that in a particle in a one dimensional box, the energy and the wavefunction depend 

on only one quantum number, nx, while for a three dimensional particle in a box, the energy 

depends on three quantum numbers, nx, ny, and nz.  Therefore, the number of quantum 

numbers we need to describe a system increases as the number of dimensions increases. 

Suppose that a> b> c.  Then if we make a diagram of energy versus quantum 

number, the lowest energy is with all three quantum numbers, nx, ny, and nz equal to one.  

We symbolize this state as ψ111 and its energy as E111.  111

2

2 2 2E = h
8m

( 1
a

+ 1
b

+ 1
c

).  The next 

level is 211

2

2 2 2E = h
8m

( 4
a

+ 1
b

+ 1
c

).  The next is 121

2

2 2 2E = h
8m

( 1
a

+ 4
b

+ 1
c

). and so on. 

The energy level diagram takes on a different appearance if our box is cubic, i.e., if 

a = b = c.  Then our energy equation becomes  

E = h
8ma

(n + n + n )x y z

2

2
2 2 2  

Our lowest energy level is still 111

2

2E
3h

8ma
= .  Our next lowest level is 

211

2

2

2

2E
h

8ma
(4 1 1) 6h

8ma
= + + = .  But notice that E121 and E112 both have this same energy, 

6h
8ma

2

2 , as well.  Each of these energy states corresponds to a different wavefunction, i.e.,  

121 3
1/ 2= ( 8

a
) x

a
2 y
a

z
a

,ψ π π πsin sin sin  

while 

211 3
1/ 2= ( 8

a
) 2 x

a
y

a
z

a
,ψ π π πsin sin sin  
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yet their energies are the same.  When two or more different wavefunctions have the same 

energy, we say that they are degenerate.  Degenerate states are always due to some 

symmetry in the system.  For example, in this case, when a=b=c, the system has 

degenerate states.  If a = b ≠ c, there are also degenerate states because as in our first case 

there is a level of symmetry.  You can see this because for this case  

 E = h
8m

( n + n
a

+ n
c

)n n n

2
x
2

y
2

2
z
2

2x y z
, 

which means that 

 211 121

2

2 2E = E = h
8m

( 5
a

+ 1
c

)  while 112

2

2 2E = h
8m

( 2
a

+ 4
c

). 

However, for the case where a ≠ b ≠ c, and there is no other symmetry, there are no 

degenerate states.  Degenerate states are at the core of several phenomena, the most familiar 

of which is NMR. 

To summarize: If you have a Hamiltonian, H , which can be written as the sum 

of component Hamiltonians of one variable,    H = H H H ,x y z+ + then the solution, 

ψ(x,y,z), will be the product of three one dimensional wavefunctions, 

ψ (x, y,z)= X(x)Y(y)Z(z) , and its energy will be the sum of the eigenvalues of the one 

dimensional eigenvalue equations, E = Ex + Ey + Ez.   
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